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ABSTRACT

5′-Deoxy-5 ′-phenyladenophostin A (5), designed as a useful IP 3 receptor ligand based on the previous structure −activity relationship studies,
was successfully synthesized via two key stereoselective glycosidation steps. This compound proved to be a highly potent IP 3 receptor
agonist.

Adenophostin A (2),2 isolated fromPenicillium breVicom-
pactum, is a very potentmyo-inositol 1,4,5-trisphosphate (IP3,
1) receptor ligand, which is 10-100 times more potent than
the endogenous ligand IP3 in stimulating Ca2+ release and
in binding to IP3 receptors.2-4 We previously synthesized
an adenophostin A analogue3 lacking the adenine moiety

and its des-hydroxymethyl derivative4, and demonstrated
that the compounds not only bind to IP3 receptors but also
stimulate Ca2+ mobilization with potencies comparable to
IP3 itself.5 These results suggested that the pentofuranosyl
structure of theD-ribose would not be essential for the
activity but the tetrahydrofuran ring could effectively restrict
the three-dimensional positioning of theD-glucose 3,4-
bisphosphate, adenine, and the third phosphate moiety of the
ring. Therefore, the 5′-hydroxymethyl moiety of adenophos-
tin A seems to be unimportant for the binding and Ca2+

mobilization, suggesting that this moiety might be appropriate
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for further modification to develop novel adenophostin
analogues of biological importance.

Bioactive ligands bearing an aromatic group, such as a
fluorescent or photoreactive aromatic residue, are useful as
biological tools in labeling target biomolecules and/or
investigating the biological mechanisms of action.6 Adeno-
phostin A might be even more suitable than IP3 itself as the
lead for this kind of modification to develop such biological
tools, because of its higher affinity for the receptor. Accord-
ingly, identification of a site for the modification of adeno-
phostin A without reducing the binding affinity is needed.
Consequently, introduction of an aromatic group into an
appropriate position of adenophostin A would be of biologi-
cal interest.

On the basis of these findings and considerations, we
designed a novel adenophostin A analogue5 having a phenyl
group at the 5′-position. Biological evaluation of this
compound would clarify steric tolerability around the 5′-
hydroxymethyl moiety for introducing a bulky aromatic
group near the binding site of the IP3 receptors.

The synthesis of the target compound5, shown in Schemes
1 and 2, includes the two key stereoselective glycosidation
steps, constructing theR-disaccharide11 with a sulfoxide
donor and theâ-nucleoside16 by the Vorbrüggen glycosy-
lation.7

The sulfoxide donor9 and the acceptor10 were used for
the R-selective glycosidation preparing11. Sulfoxide gly-
cosyl donors are known to be stable but can be activated
under mild Lewis acidic conditions.8,9 We recently developed
highly R-selectiveC-glycosidation reactions based on the
conformational restriction of the pyranosyl donor to the

4C1 form by the 3,4-O-cyclic diketal protection.10 In this
restricted conformation, the kinetic anomeric effect is
enhanced, resulting in the highR-selectivity in theseC-
glycosidation reactions.10 On the basis of these results, we
designed the sulfoxide donor9 bearing a 3,4-O-cyclic diketal
protecting group to realize the desiredR-selective glycosi-
dation due to the enhanced anomeric effect. The 3,4-O-cyclic
diketal protecting group was thought to be also advantageous
for selective phosphorylation of the hydroxyl groups at a
later stage in the synthesis.11

The glycosyl donor9 was prepared as shown in Scheme
1. Phenyl 1-thio-â-D-glucoside (6) was heated with 2,2,3,3-
tetramethoxybutane, (MeO)3CH, and (+)-camphorsulfonic
acid (CSA) in MeOH under reflux12 to give the 3,4-O-cyclic
diketal derivative7 in 49% yield, along with the correspond-
ing 2,3-O-protected isomer. Benzylation of the 2- and
6-hydroxyls of 7 followed by m-chloroperbenzoic acid
(m-CPBA) oxidation gave the sulfoxide donor9.

The glycosidation of the donor9 and the acceptor10 (1.0
equiv), prepared according to the previously reported method,13

was investigated with Tf2O and 2,6-di-tert-butyl-4-meth-
ylpyridine (DTBMP) as the promoter9 under various condi-
tions. TheR/â-selectivity was significantly affected by the
reaction conditions. Although the reaction with CH2Cl2 as
solvent gave non-stereoselectively a mixture ofR/â-glycosi-
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Scheme 1

Figure 1. IP3 receptor ligands.
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dation products, we found that the stereoselectivity improved
by using Et2O as the solvent. Thus, the desiredR-glucoside
11 was obtained as the sole glycosidation product in 78%
yield, when the reaction was performed in Et2O at -78°C
(Scheme 1).

Synthesis of the target compound5 from theR-glucoside
11 was accomplished as summarized in Scheme 2. After
removal of the 5-O-TBS group of11, the 5-hydroxymethyl
moiety of the resulting12was oxidized by Moffatt oxidation
conditions. The aldehyde obtained was immediately treated
with PhMgBr in THF to give the 5-phenyl product13.
Radical deoxygenation at the 5-position was performed by
the treatment of13with PhOCSCl/4-(dimethyamino)pyridine
(DMAP) in MeCN and then with Bu3SnH/AIBN in hot
benzene to give14. Acidic removal of the ketal protecting

groups of14 followed by acylation produced the 1,2,3′,4′-
tetra-O-acetate15aor the 1,2,3′,4′-tetra-O-i-butyrylate15b.

The Vorbrüggen glycosylation of the acetate15a was
examined (Table 1). The reaction was first carried out with

N6-benzoyladenine and TMSOTf/Et3N in MeCN or dichloro-
ethane (entries 1 and 2), where the silylatedN6-benzoyl-
adenine was formed under the reaction conditions. Although
these reactions selectively produced the expectedâ-nucleo-
sidic product, the yield was low. The reaction using silylated
N6-benzoyladenine, prepared fromN6-benzoyladenine and
hexamethyldisilazane/pyridine, as the acceptor and SnCl4 as
the promoter in MeCN improved the yield; however, theR/â-
mixture was produced non-stereoselectively (entry 3).14

We recently reported that, in the Vorbrüggen glycosylation
reaction with a sterically hindered ribosyl donor, high
â-selectivity was realized when the hydroxyl groups of the
donor were protected byi-butyryl groups.15 Since glycosy-
lation with the donor15a might not work well because of
steric hindrance due to the 5-phenyl group, we therefore
investigated reactions using the tetra-O-i-butyryl donor15b.
Although the reaction using the donor15b under TMSOTf
conditions was unsuccessful (Table 1, entry 4), the desired
â-nucleoside16b was selectively obtained in 60% yield,
when15band silylatedN6-benzoyladenine were treated with
SnCl4 in MeCN at room temperature (entry 5).16 Thus, like
the previous case,15 the i-butyryl protection of the sterically
hindered ribosyl donor proved effective in this Vorbrüggen
glycosylation.

The threeO-i-butyryl and theN-benzoyl groups of16b
were removed simultaneously with NaOMe/MeOH to give
17. The phosphate units were selectively introduced into the
three hydroxyls, using the phosphoramidite method with
o-xyleneN,N-diethylphosphoramidite (XEPA).17 Thus, 17
was treated with XEPA in the presence of imidazolium
triflate as a promoter18 in CH2Cl2, followed by oxidation with
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Scheme 2

Table 1. Vorbrüggen Glycosylation with Donors15a and15b

entry donor Lewis acid methoda solvent yield (R/â)b

1 15a TMSOTf A MeCN 18% (â)
2 15a TMSOTf A (ClH2C)2 26% (â)
3 15a SnCl4 B MeCN 66% (R/â)
4 15b TMSOTf A MeCN 12% (â)
5 15b SnCl4 B MeCN 60% (â)

a A: N6-benzoyladenine (4 equiv), TMSOTf (10 equiv), and Et3N (4
equiv) at room temperature. B: silylatedN6-Bz-adenine (5 equiv), prepared
by heatingN-benzoyladenine in hexamethyldisilazane/pyridine and SnCl4
(6 equiv) at room temperature.b TheR-anomer was not detected in the1H
NMR spectrum in entries 1, 2, 4, and 5; and theR/â ratio was about 1:1
based on the1H NMR spectrum in entry 3.
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m-CPBA to give the desired 2′,3′′,4′′-trisphosphate derivative
18 in 90% yield. Finally, the benzyl protecting groups were
all removed in one step by catalytic hydrogenation with Pd
black in aqueous MeOH/CHCl3 to furnish the target tris-
phosphate5 as a sodium salt, after treatment with ion-
exchange resin.

The Ca2+-mobilizing activity of 5 was evaluated using
recombinant rat type 1 IP3 receptors expressed in DT40 cells
lacking endogenous IP3 receptors.19 The results show that
5′-deoxy-5′-phenyladenophostin A (5) is a potent full agonist,
mobilizing all of the IP3-sensitive Ca2+ pool in a concentra-
tion-dependent manner. The half-maximally effective con-
centration (EC50) for 5 was 2.1( 0.4 nM (n) 5; Hill slope
) 1.62( 0.24), which is comparable to that for adenophostin
A (2.1 ( 0.2 nM;n ) 12; Hill slope) 1.54( 0.13), and is
about 13-fold lower than the EC50 for the natural ligand IP3
(24.8( 2.1 nM;n ) 11; Hill slope) 1.21( 0.06) in parallel
experiments.

In conclusion, the novel adenophostin A analogue5

conjugated with a phenyl group at the 5′-position designed
as a useful IP3 receptor ligand was effectively synthesized
via the two key stereoselective glycosidation steps. The
analogue5 proved to have significant Ca2+-mobilizing
potency. Thus, the 5′-position of adenophostin A is identified
as a site suitable for the further modification to develop
biological tools, which are useful for investigating biological
mechanisms of action of Ca2+ mobilization.
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